Decision Trees as a Business Online Advertising Strategy Optimization Tool

Vesela Mihova, PhD Candidate
Faculty ‘Natural Sciences and Education’
Department of Applied Mathematics & Statistics
University of Ruse ‘Angel Kanchev’, Bulgaria
E-mail: vmicheva@uni-ruse.bg

Abstract: Online advertising services such as Google AdWords provide their customers with statistics on the performance of their ads. Based on this data, each company could optimize its ads. In the work presented, the potentials of using decision trees for classification in the field of online advertising are outlined by solving a problem from practice. A subsequent analysis shows which actions the company could take to optimize its online advertising strategy. The algorithm proposed could be used for other data in a similar situation.

Key words: Google AdWords, Online Advertising Strategy, Decision Tree.

І. Introduction
Nowadays, in order to achieve good realization on the market, a product or a service should not only be affordable and of good quality, but also have an effective advertising strategy. Competitive and dynamic markets require private companies to have an adequate advertising strategy. For this purpose, business often resorts to internet services, as it could reach through the network a huge number of potential buyers within a short time. In the most advanced economies, Internet advertis-
Advertising costs reach 50% of the total advertising costs of the companies (Abcbg.com, 2017). Among the main advantages of advertising on the Internet are good accountability (statistics about interest, attitudes and behavior of the consumers) and efficiency (lower cost and greater flexibility).

The business online advertising strategy typically includes Google ads (in Google Search Engine), website banners, social media ads, presence in the electronic media, development of own business blog, internet videos, electronic word-of-mouth, etc. The combination of different types of advertising and the allocation of resources (time, money) to them depends on what budget the company has allocated to advertising as a whole, the target market of the company’s products or services, and the specifics of these products and services.

The research object of the current work are the ads that appear when searching for keywords in Google’s search engine. The subject of the research is the effectiveness of these ads, and the goal is to illustrate the use of decision tree as a tool that companies can apply to optimize their online advertising strategy. To accomplish the stated goal, the following tasks have been solved:

- The decision tree method has been used in order to classify company’s online ads according to their conversion rate;
- Two different approaches of validating the decision tree have been considered: split-sample validation and cross-validation, and the results of both methods have been compared;
- An analysis has been carried out – which actions the company could take to optimize its online advertising strategy.

The data for the empirical research is provided using the online advertising services of Google AdWords. With Google AdWords, businesses can reach relevant customers on their preferred websites anywhere on the internet.
the web (Adwords.google.com, 2017), or attain Google Search Engine users (the ad is shown when searching for keywords).

Google AdWords shows how many people have noticed an ad and what percentage of them have clicked to visit the website the ad refers to or have called the ad phone number. The platform also allows tracking the actual sales generated by the advertiser’s website as a direct result of its ads. Hereinafter, the following definitions have been used (Support.google.com, 2017):

- **Click** - when someone clicks an ad.
- **Impression** - each time an ad is shown on a search result page or other site on the Google Network is counted.
- **Clickthrough Rate** - the number of clicks that an ad receives divided by the number of times it is shown (Clicks / Impressions = CTR), measured in percentages.
- **Average Position** - describes how an ad typically ranks against other ads. The highest position is “1”, and there is no “bottom” position. An average position of 1-8 is generally on the first page of search results, 9-16 is generally on the second page, and so on. Average positions can be between two whole numbers. For example, an average position of “1,6” means that the ad usually appears in positions 1 or 2.
- **Conversion** - it happens when someone clicks an ad and then takes an action, which the advertising company has defined as valuable for its business, such as an online purchase or a call to the business from a mobile phone.
- **Conversion Rate** - the average number of conversions per ad click, shown as a percentage.

Google AdWords provides its customers with statistics on the performance of their ads. Based on this data, each company could optimize its ads, test new search keywords, stop advertising temporarily, and so on.

Mathematical tools that are part of the so-
called “Data Mining” process are often used in order to optimize an online advertising strategy. These tools include descriptive analysis, link analysis, multi-dimensional statistical analysis, decision trees, forecasting, neural networks, and more.

Data Mining is used to extract useful information from large datasets and to display it in easy-to-interpret visualizations (Song and Ying, 2015). It is an interdisciplinary area that arises and develops on the basis of “neighboring” fields such as Applied Statistics, Machine Learning, Artificial Intelligence, etc. (Ivanov, 2016). Data Mining is more pragmatic than theoretical (Zaki, Meira and Meira Jr, 2014), (Olson and Delen, 2008). Its technology is based on the concept of development of templates reflecting multi-dimensional relationships in data (Han and Kamber, 2006). Among the main thematic issues that could be solved with Data Mining tools are the tasks of classification, clustering, forecasting and prediction, association, visualization, identification and analysis of deviations, assessment, link analysis, aggregation (Ivanov, 2016). Data Mining is applied in a number of areas, including marketing, sales, customer relationship management and behavioral models, for which extensive information is provided by Linoff and Berry (2011), Ngai and Chau (2009), Shaw, Subramaniam, Tan and Welge (2001) and others.

Decision trees, which were introduced in the 1960s, are one of the most effective methods for Data Mining. They represent a nonparametric method for analyzing the target variable as a function of explanatory characteristics (Filipov, 2014). They use the following algorithm: a dichotomous tree is constructed from nodes; at each node the population is subdivided into sub-populations based on the function of one of the variables; the system takes into account all possible divisions and chooses the best (resulting in minimal error of discrimination of the possible values of the target variable); the process continues until in each node has left records with only one of the possible values of the target variable, or until further separation
Decision Trees as a Business Online Advertising Strategy Optimization Tool

Decision trees are widely used in a number of disciplines (Hastie, Tibshirani and Friedman, 2009), because they are easy to work with, give unambiguous results, and are persistent even in the presence of missing data. Similar information, concerning the application of decision trees in personalized advertisements on internet storefronts, is provided by Kim, Lee, Shaw, Chang and Nelson (2001).

The decision tree method is used in the current work in order to classify a company’s online ads according to their conversion rate. The classification has been done using SPSS (Science and Analytics, 2017). A subsequent analysis of the actions the company could take to optimize its online advertising strategy has been carried out.

Basic steps for statistical analysis with SPSS are presented from Goev (1996), Manov (2001), Pavlov and Mihova (2016). More specific information about the decision tree development process in SPSS is given by Magidson (2005), Baizyldayeva, Uskenbayeva and Amanzholova (2013) and others.

II. Exposition

AA database from an insurance company has been used for the purposes of the study. It contains information about the online advertising of the products of the company for the period March 2008 - January 2017 (monthly data). The company offers the following insurance products:
- Property Insurance: Real Estate, CASCO, CARGO, Insurance of Construction and Assembly Works
- Liability Insurance: General Liability Insurance, Compulsory Civil Liability Insurance for Dangerous Activities, Professional Liability Insurance
- Legal Expenses Insurance
- Financial Risk Insurance
- Travel Assistance Insurance.

The available data includes 339 entries, with some missing monthly data for some of the types of insurance.

II. Изложение

За нуждите на изследването е използвана база данни от застрахователна компания, съдържаща информация за онлайн реклама на застрахователните продукти на фирмата за периода март 2008 – януари 2017 г. (месечни данни). Компанията предлага следните застрахователни продукти:
- Имуществени застраховки: на недвижими имоти, КАСКО, КАРГО, на строително-монтажни работи (СМР);
- Застраховки на отговорности: обща гражданска отговорност (ГО), задължителна ГО за опасни дейности, професионални отговорности;
- Застраховане на правни разноски;
- Застраховки срещу финансов риск;
A classification of the types of ads (according to the type of insurance) has been done, based on the conversion rate as the main criteria and on the average position as an additional criterion. The idea of including the average position in the decision tree is that it has the following influence: the cases with higher average positions have a greater impact on the classification, those with lower average positions have less impact. The logic is that the cases with higher positions are shown backward in search and if these cases (or ads) have a high conversion rate, then the ad is really good - it leads to a high conversion of the product (although it is shown backward in search) and costs less to the company.

The Chi-squared Automatic Interaction Detection (CHAID) technique (Kass, 1980) has been used for the classification. An important note here is that unlike regression analysis, the CHAID technique does not require the data to be normally distributed.

In order to check the stability of the classification (whether it could be applied to the entire set), it is good practice to test how it works on a sample that was not used in the development of this classification. That is, to validate the results. Two different approaches of validating the decision tree have been considered in this work: split-sample validation and cross-validation. The results of the two methods have been compared, and then it has been analyzed which types of insurance have a high conversion rate and for which types change in the advertising strategy is required due to their low conversion rate.

Split-Sample Validation

With split-sample validation, the model is generated on a random sample of the data (development sample) and tested on the rest of the data (validation sample).

The development (training) sample normally includes 80% randomly selected records from the available database and the validation (test) sample includes the remaining 20% (in some cases, a variable is chosen to split the observations in the two samples). For the available data, such
a ratio (80%:20%) results in a very small number of observations in the test sample (68 cases), which in turn may lead to a distortion of the results. For this reason, the development sample in the presented work includes 75% randomly selected cases. This sample has been used to classify the data by the selected variables. The validation sample includes the remaining 25% - it has been left to validate the results.

As a result of the classification, generated on the development sample, the observations have been divided into two groups according to the conversion rate of the advertised products (Fig. 1):

- Group 2 (Node 2): Compulsory Civil Liability Insurance, Travel Assistance Insurance, CARGO, Professional Liability Insurance, CASCO.

![Figure 1. Decision tree: (a) development sample and (b) validation sample](image)

Figure 1. Decision tree: (a) development sample and (b) validation sample

Фигура 1. Дърво на решенията: (а) работна извадка и (б) валидационна извадка

Source: Own Calculations with SPSS / Източник: Собствени изчисления със SPSS
Table 1 shows gain summary on the decision tree statistics, including the mean values \(\bar{Y} \) and the predicted values \(\hat{Y} \) of the conversion rate, the number and the percentage of observations for each of the groups in each of the samples (development and validation), as well as the standard deviation.

It could be seen from Table 1 that the validation sample confirms the results from the development sample. In addition, the risk of incorrect classification is low - it has an estimate of 0.019 (or 1.9%) for the development sample and 0.008 (or 0.8%) for the validation sample.

Table 1. Decision tree – gain summary by groups

<table>
<thead>
<tr>
<th>Sample</th>
<th>Group</th>
<th># of Cases</th>
<th>% of Sample</th>
<th>(\bar{Y})</th>
<th>(\hat{Y})</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td>1</td>
<td>140</td>
<td>58.6%</td>
<td>0.088</td>
<td>0.101</td>
<td>0.171</td>
</tr>
<tr>
<td>(Training)</td>
<td>2</td>
<td>99</td>
<td>41.4%</td>
<td>0.055</td>
<td>0.053</td>
<td>0.074</td>
</tr>
<tr>
<td>Total/Общо</td>
<td></td>
<td>239</td>
<td>100.0%</td>
<td>0.074</td>
<td>0.082</td>
<td>0.140</td>
</tr>
<tr>
<td>Validation</td>
<td>1</td>
<td>59</td>
<td>59.0%</td>
<td>0.065</td>
<td>0.101</td>
<td>0.079</td>
</tr>
<tr>
<td>(Test)</td>
<td>2</td>
<td>41</td>
<td>41.0%</td>
<td>0.054</td>
<td>0.053</td>
<td>0.089</td>
</tr>
<tr>
<td>Total/Общо</td>
<td></td>
<td>100</td>
<td>100.0%</td>
<td>0.060</td>
<td>0.082</td>
<td>0.083</td>
</tr>
</tbody>
</table>

Source: Own Calculations / Източник: Собствени изчисления

The distribution of the conversion rate in the two samples has a similar trend (Fig. 2), which confirms the results.

Cross-Validation

Cross-validation divides the sample into a number of subsamples. Decision trees are generated, excluding the data from each subsample in turn: the first tree is generated on all of the records except those in the first subsample; the second tree is generated on all of the records except those in the second subsample, etc. For each of these trees, the stability of the classification is tested using the subsample that was not involved in the tree’s generation.

Cross-validation produces a single (final) decision tree.

The risk estimate of incorrect classification for the final tree is the average estimate of the risks for all of the trees.

Разпределение то нивото на реализация в двете извадки има сходна тенденция (Фиг. 2), което затвърждава резултатите.

Крос-валидация

Крос-валидацията разделя извадката на няколко подизвадки. Генерирането на дърветата на решенията, като се изключват данните от всяка една извадка поотделно: първото дърво се генерира върху всички записи с изключение на тези от първата подизвадка; второто дърво се генерира върху всички записи с изключение на тези от втората подизвадка и т.н. За всеки от тези дървета се прави проверка на стабилността на класификацията, като за целта се използва подизвадката, която не е участвала в генерирането на съответното дърво.

Резултатът от крос-валидацията е едно единствено (финално) дърво на решенията. Валидираната по този метод оценка на риска от неправилна класификация за
As a result of the classification, generated on the available data, the observations have been divided into two groups according to the conversion rate of the advertised products (Fig. 3)

- Group 2 (Node 2): General Liability Insurance, Compulsory Civil Liability Insurance for Dangerous Activities, Travel Assistance Insurance, CARGO, Professional Liability Insurance, CASCO.

It is noteworthy that the grouping with cross-validation confirms the one obtained with the split-sample validation, with one exception: advertising of General Liability Insurance.

Table 2 shows gain summary on the final decision tree statistics. It could be seen from the table that the mean values of the conversion rate for the two groups are very close to those for the respective groups of the development sample in the split-sample validation.

Figure 2. Distribution of the conversion rate in the training and in the test sample

Source: Own Calculations with SPSS

Фигура 2. Разпределение на нивото на реализация в работната и тестовата извадка

Източник: Собствени изчисления със SPSS
Figure 3. Final decision tree with cross-validation

Фигура 3. Финално дърво на решенията при крос-валидацията

Table 2. Final Decision tree – gain summary by groups

Таблица 1. Финално дърво на решенията – обобщени статистики по групи

The risk of incorrect classification is low - it has an estimate of 0.017 (or 1.7%).

The distribution of the conversion rate (Fig. 4) has a similar trend to that of the split-sample validation.

Рискът от неправилна класификация е нисък - той има оценка от 0,017 (или 1,7%).

Разпределението на нивото на реализация (Фиг. 4) има сходна тенденция с това при валидирането с разделен подбор.
Subsequent Analysis
The results obtained from the two validation methods are similar:
- The cross-validation grouping confirms the one obtained with the split-sample validation with one exception: advertising of General Liability Insurance.
- The mean values of the conversion rate for the two groups obtained through cross-validation are very close to those for the respective groups of the development sample in the split-sample validation.
- The distribution of the cross-validation conversion rate has a similar trend to that of the split-sample validation.

The General Liability Insurance ad has an average conversion rate of 0.045 (or 4.5%), which brings it closer to the mean value for the group with lower conversion rate. Therefore, in the subsequent analysis, the General Liability Insurance ad has been left in Group 2.

Analysis на резултатите
Резултатите, получени по двата метода за валидиране, са сходни:
- групирането при крос-валидацията потвърждава това при разделения подбор с изключение на рекламата на обща ГО;
- средните стойности на нивото на реализация за двете групи, получени чрез кросвалидация, много се доближават до тези за съответните групи от работната извадка при валидирането с разделен подбор;
- разпределението на нивото на реализация при кросвалидацията има сходна тенденция с това при валидирането с разделен подбор.

Рекламата на обща ГО има средно ниво на реализация 0,045, което я доближава повече до средната стойност за групата с по-ниска реализация (отколкото до тази с по-висока реализация). Затова при последващия анализ застраховката обща ГО е оставена в Група 2.
The results obtained from the CHAID procedure can be used to optimize the online advertising strategy of the insurance company. In the interpretation of the results below, the following distribution of the ads to the appropriate groups is respected:

- **Group 1** (higher conversion rate): Financial Risk Insurance, Real Estate Insurance, Insurance of Construction and Assembly Works, Legal Expenses Insurance
- **Group 2** (lower conversion rate): General Liability Insurance, Compulsory Civil Liability Insurance for Dangerous Activities, Travel Assistance Insurance, CARGO, Professional Liability Insurance, CASCO.

This distribution corresponds to the one obtained from the cross-validation method.

Let the company set a minimum conversion rate, below which the ad is considered ineffective. The following scenarios are possible:

- **Scenario 1**: Both groups have an average conversion rate above the minimum - no need for the company to change its strategy.
- **Scenario 2**: Only Group 1 has an average conversion rate above the minimum - the online advertising strategy for this group may remain as it is, while Group 2 needs a change in the online advertising strategy. If the insurance company wants to reduce its costs, it could directly stop advertising the products from Group 2.
- **Scenario 3**: Both groups have an average conversion rate below the minimum - then the company could stop the ads of the products from Group 2 and redirect their costs to the products from Group 1 so that Group 1 exceeds the minimum conversion rate.

Получените резултати могат да бъдат използвани за оптимизиране на онлайн рекламната стратегия на застрахователната фирма. При интерпретирането на резултатите по-долу е спазено следното разпределение на рекламите към съответните групи (отговаря на полученото по метода с крос-валидация):

- **Група 1**: застраховки срещу финансов риск, застраховки на не-движими имоти; застраховки на СМР, застраховане на правни разноски;
- **Група 2**: обща ГО, задължителна ГО за опасни дейности, асистанс, КАРГО, КАСКО, професионални отговорности.

Нека компанията е заложила минимално ниво на реализация, под което счита рекламата за неефективна. Възможни са следните сценарии:

- **Сценарий 1**: И двете групи имат средно ниво на реализация над минималното – няма нужда от промяна в стратегията на компанията;
- **Сценарий 2**: Само Група 1 има средно ниво на реализация над минималното - при нея онлайн рекламната стратегия може да остане, както е, докато Група 2 се нуждае от промяна в онлайн рекламната стратегия. Ако от застрахователната компания искат да намалят разходите си, те биха могли направо да спрат рекламите на продукти от Група 2.
- **Сценарий 3**: И двете групи имат средно ниво на реализация под минималното – тогава рекламите на продукти от Група 2 могат да бъдат спрени и разходите за тях да бъдат пренасочени към Група 1, така че тя да надскочи минималното ниво на реализация.
III. Conclusion

A product or a service should not only be affordable and of good quality, but also have an effective advertising strategy, in order to achieve good realization on the market. Online advertising services such as Google AdWords provide their customers with statistics on the performance of their ads. Based on this data, each company could optimize its ads in Google’s search engine, test new search keywords, stop advertising temporarily, and so on.

To optimize the online advertising strategy, various mathematical tools could be used, one of which – the decision tree. In the work presented, by solving a problem from practice, the potentials of using this tool for classification in the field of online advertising have been outlined.

The classification has been done with SPSS, using the CHAID method. After applying this method to the empirical data, two groups with a significantly different average conversion rate were found. Two different approaches of validating the decision tree have been applied: split-sample validation and cross-validation. They provide reliability about the stability of the classification.

The results of the two validation methods have been compared, and then an analysis has been carried out – which actions the company could take to optimize its online advertising strategy by applying appropriate actions to each of the individual groups (according to their average conversion rate).

The work presented covers a problem that has a practical application in business organizations from different spheres (the field of insurance is used as an example here).

The algorithm presented could be used for other data (regardless of sphere) in a similar situation.

As a next step for future work, the decision tree (or another Data Mining methods) could be considered to optimize some of the other types of online advertising that companies use to reach their customers.
Reference/Литература

